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Abstract
The classical transcendental solutions to the Painlevé III equation are derived
from a family of solutions to the SL(2, C) anti-self-dual Yang–Mills equation.
It is also shown that the affine Weyl group symmetry of PIII is recovered from
the symmetry of Yang’s equation.
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1. Introduction

Both the anti-self-dual Yang–Mills (ASDYM) equation and the six Painlevé equations play
a key role in the theory of integrable systems. It has been shown by Mason and Woodhouse
that the SL(2, C) ASDYM equation can be reduced to the Painlevé equations under certain
three-dimensional Abelian groups of conformal symmetries [1, 2].

Corrigan et al have constructed a family of solutions to Yang’s equation, which is
equivalent to the ASDYM equation, in the case of SL(2, C) [3, 4]. These solutions can
be expressed in terms of Hankel determinants whose entries satisfy the Laplace equation.
On the other hand, it is known that the classical transcendental solutions to the Painlevé
equations can be expressed in terms of some determinants whose entries satisfy (confluent)
hypergeometric differential equations [5]. In the previous paper [6], the author has presented
the explicit expression for a family of solutions to Yang’s equation that corresponds to the
classical transcendental solutions of the Painlevé II and IV equations. Shah and Woodhouse
have constructed a similar expression for the Painlevé VI equation [7].

One of the aims of this paper is to present a similar expression in terms of τ -functions for
a family of classical transcendental solutions to the Painlevé III equation (PIII)
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or its equivalent
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which is called Painlevé III’ equation. These two equations are mutually connected through
the variable transformations t = ρ2, y = ρy∗.

It is also known that each of the Painlevé equations, except for PI, admits the affine Weyl
group symmetry as the group of Bäcklund transformations. It is meaningful to explain such a
symmetry from that of the ASDYM equation. Another purpose of this paper is to derive the
(extended) affine Weyl group symmetry of PIII′ from the symmetry of Yang’s equation.

In section 2, we give a brief review of Yang’s equation, its symmetry and a family
of special solutions. We summarize the derivation of PIII′ from the ASDYM equation in
section 3. In section 4, we show that the classical transcendental solutions of PIII can be
derived from the family of solutions to Yang’s equation. In section 5, we mention the
derivation of PIII′ from Yang’s equation and show that all the Bäcklund transformations of PIII′

can be recovered from those of Yang’s equation. Appendices A and B are devoted to a remark
on the relationship to the Ernst equation.

2. Yang’s equation, its symmetry and determinant solutions

In this section we give a brief review of Yang’s equation [8], its symmetries and a family of
special solutions expressed in terms of Hankel determinants [3, 4].

The SL(2, C) ASDYM equation is given by

∂zAw − ∂wAz + [Az,Aw] = 0,

∂z̃Aw̃ − ∂w̃Az̃ + [Az̃,Aw̃] = 0,

∂zAz̃ − ∂z̃Az − ∂wAw̃ + ∂w̃Aw + [Az,Az̃] − [Aw,Aw̃] = 0,

(2.1)

where Az,Aw,Az̃ and Aw̃ are the components of the gauge potential A = Az dz + Aw dw +
Az̃ dz̃ + Aw̃ dw̃ and are sl(2, C)-valued functions. The first two equations of (2.1) are the local
integrability conditions for the existence of two matrix-valued functions H and H̃ such that

∂zH = −AzH, ∂wH = −AwH, ∂z̃H̃ = −Az̃H̃ , ∂w̃H̃ = −Aw̃H̃ . (2.2)

They are determined uniquely by A up to H �→ HM̃, H̃ �→ H̃M , where M depends only on
z and w, and M̃ depends only on z̃ and w̃. The third equation of (2.1) holds if and only if the
J -matrix defined by J = H̃−1H satisfies Yang’s equation

∂w(J−1∂w̃J ) − ∂z(J
−1∂z̃J ) = 0. (2.3)

It is obvious that Yang’s equation is invariant under the transformation

J �→ M−1JM̃, (2.4)

which means that one can regard the transformation (2.4) as the Bäcklund transformation of
Yang’s equation (2.3). It is known that Yang’s equation (2.3) also admits another Bäcklund
transformation. We set

J = 1

f

(
1 g

e f 2 + eg

)
(2.5)



ASDYM equation and Painlevé III equation 14435

to express Yang’s equation (2.3) as the coupled nonlinear equations
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f 2
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f 2
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)
,

∂z

(
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f 2

)
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(
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f 2

)
.

(2.6)

Lemma 2.1. Let (e, f, g) be a solution to (2.6). Then (ê, f̂ , ĝ) defined by

f̂ = 1

f
, ∂zĝ = ∂w̃e

f 2
, ∂wĝ = ∂z̃e

f 2
, ∂z̃ê = ∂wg

f 2
, ∂w̃ê = ∂zg

f 2
(2.7)

is also a solution.

We call (2.7) the transformation β. Obviously we have β2 = 1.
As a particular example of the Bäcklund transformation (2.4), we consider the

transformation γ defined by

γ : J �→
(

1

1

)
J

(
1

1

)
. (2.8)

We also have γ 2 = 1. Since βγ �= γβ, it is possible to generate solutions to Yang’s equation
by operating one after the other. In fact, Corrigan et al [3, 4] have constructed a family of
solutions to Yang’s equation by such a procedure.

Proposition 2.2 [3, 4]. Define the functions τm
n (m ∈ Z, n ∈ Z�0) by

τm
n =

∣∣∣∣∣∣∣∣∣∣∣

ϕm−n+1 ϕm−n+2 · · · ϕm

ϕm−n+2 ϕm−n+3 · · · ϕm+1

...
...

. . .
...

ϕm ϕm+1 · · · ϕm+n−1

∣∣∣∣∣∣∣∣∣∣∣
, (2.9)

where the entries ϕj satisfy

∂w̃ϕj = ∂zϕj+1, ∂z̃ϕj = ∂wϕj+1 (2.10)

and the Laplace equation

(∂w∂w̃ − ∂z∂z̃) ϕj = 0. (2.11)

Then

J = 1

τm
n

(
τm−1
n τm

n+1

τm
n−1 τm+1

n

)
(2.12)

gives rise to a family of solutions to Yang’s equation (2.3).

We remark that the functions τm
n defined by (2.9) satisfy the bilinear relations [9]

Dw̃τm
n · τm+1

n−1 = Dzτ
m+1
n · τm

n−1,

Dz̃τ
m
n · τm+1

n−1 = Dwτm+1
n · τm

n−1,

τm
n+1τ

m
n−1 = τm+1

n τm−1
n − τm

n τm
n ,

(2.13)

where Dw̃,Dz,Dz̃ and Dw are Hirota’s bilinear operators.
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3. Reduction to the Painlevé III’ equation

Mason and Woodhouse have shown that the SL(2, C) ASDYM equation can be reduced to the
Painlevé equations [1, 2]. Suppose that the gauge potential A is invariant under the action of
the Jordan group of degree 4. Then the ASDYM equation is reduced to a system of ordinary
differential equations, from which one can derive the Painlevé equation.

Let us summarize the derivation of the Painlevé III’ equation from the ASDYM equation
according to [1, 2]. In the case of PIII′ , we take the Jordan group of the form⎛⎜⎜⎜⎜⎝

1 a

1

b c

b

⎞⎟⎟⎟⎟⎠ , (3.1)

and the above criterion leads us to the coordinate transformation

p = z, q = z̃, r = log w̃, t = ww̃. (3.2)

We rewrite the gauge potential A in the form A = P dp + Q dq + R dr + T dt , where P,Q,R

and T depend only on t. Since it is possible to fix T = 0 by a gauge transformation, we have

Az = P, Az̃ = Q, Aw = 0, Aw̃ = e−rR. (3.3)

Substituting the result into the ASDYM equation (2.1), we get a system of ordinary differential
equations

P ′ = 0, Q′ = [Q,R], R′ = t[P,Q], ′ = t
d

dt
. (3.4)

The residual gauge freedom can be exploited to reduce P to the form P = diag(k,−k)(k �= 0),
when the eigenvalue of P is a non-zero constant. We then obtain for six unknowns a system
of equations

R′
11 = 0, R′

12 = 2ktQ12, R′
21 = −2ktQ21,

Q′
11 = Q12R21 − Q21R12,

Q′
12 = 2(Q11R12 − Q12R11),

Q′
21 = 2(Q21R11 − Q11R21).

(3.5)

We find that the quantities

l2 = 1
2 tr(Q2) = Q2

11 + Q12Q21,

m = tr(PR) = 2kR11,

n = tr(QR) = 2Q11R11 + Q12R21 + Q21R12

(3.6)

are the first integrals and that the system (3.5) essentially has three unknown variables.
By using (3.5) and (3.6) we obtain for y = R12/Q12 and x = −Q11 + l a system of

equations

y ′ = 2y2x − (η∞y2 + θ0y + η0t),

x ′ = −2yx2 + (2η∞y + θ0)x − 1
2η∞(θ0 + θ∞),

(3.7)

with

η0 = −2k, η∞ = 2l, θ0 = −m

k
, θ∞ = n

l
, (3.8)

which are precisely the Hamiltonian system for PIII′ (1.2). Note that one can get for
ŷ = R21/Q21 the equation PIII′ with the parameter θ0 being replaced by θ0 − 2.
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4. The J -matrix for the classical transcendental solutions to PIII

In this section we construct the J -matrix for the classical transcendental solutions to the
Hamiltonian system for the Painlevé III equation,

y ′
∗ = 4y2

∗x∗ − 2η∞ρy2
∗ − (2θ0 + 1)y∗ − 2η0ρ,

x ′
∗ = −4y∗x2

∗ + (4η∞ρy∗ + 2θ0 + 1)x∗ − η∞(θ0 + θ∞)ρ,
(4.1)

where we denote ′ = ρ d
dρ

. This system can be obtained from (3.7) by the variable

transformations t = ρ2, y = ρy∗ and x = ρ−1x∗.

Proposition 4.2 [5, 10]. Define the functions τ ν
n (n ∈ Z�0, ν ∈ C) by

τ ν
n =

∣∣∣∣∣∣∣∣∣∣∣

ψ(0)
ν ψ(1)

ν · · · ψ(n−1)
ν

ψ(1)
ν ψ(2)

ν · · · ψ(n)
ν

...
...

. . .
...

ψ(n−1)
ν ψ(n)

ν · · · ψ(2n−2)
ν

∣∣∣∣∣∣∣∣∣∣∣
, ψ(k)

ν =
(

ρ
d

dρ

)k

ψν, (4.2)

where ψν is given in terms of (modified) Bessel functions by

ψν =
{

c1Jν + c2Yν, (4η0η∞ = +1)

c1Iν + c2I−ν, (4η0η∞ = −1)
(4.3)

with c1 and c2 being arbitrary complex constants. Then

y∗ = 1

2η∞

τ ν
n+1τ

ν+1
n

τ ν+1
n+1 τ ν

n

, x∗ = − 1

4η0ρ

τν+1
n+1 τ ν+1

n−1

τ ν+1
n τ ν+1

n

(4.4)

with

θ∞ = ν + n + 1, θ0 = −ν + n − 1 (4.5)

give rise to a family of classical transcendental solutions to the Hamiltonian system for PIII.

Note that we have for the τ -functions (4.2) the following bilinear relations:

τ ν
n+1τ

ν
n−1 = 4η0η∞ρ2

(
τ ν+1
n τ ν−1

n − τ ν
n τ ν

n

)
,

(4η0η∞)−1τ ν
n+1τ

ν+1
n−1 = τ ν+1

n+1 τ ν
n−1 − 2nρτν+1

n τ ν
n ,

ρτ ν−1
n+1 τ ν+1

n = −4η0η∞ρτν+1
n+1 τ ν−1

n + 2ντ ν
n+1τ

ν
n ,

(ρDρ − ν − n)τ ν
n+1 · τ ν+1

n = −4η0η∞ρτν+1
n+1 τ ν

n ,

(4.6)

where Dρ is Hirota’s bilinear operator. By using these relations and (3.6), we see that the
matrices Q and R can be calculated as

Q =

⎛⎜⎜⎜⎝
η∞
2

+
1

4η0ρ2

τ ν+1
n+1 τ ν+1

n−1

τ ν+1
n τ ν+1

n

Cnη∞ρ−(ν+n+1)
τ ν+1
n+1 τ ν

n

τ ν+1
n τ ν+1

n

−C−1
n

1

4η0
ρν+n−1 τ ν+2

n τ ν+1
n−1

τ ν+1
n τ ν+1

n

−η∞
2

− 1

4η0ρ2

τ ν+1
n+1 τ ν+1

n−1

τ ν+1
n τ ν+1

n

⎞⎟⎟⎟⎠ , (4.7)

and

R =

⎛⎜⎜⎜⎝
ν + 1 − n

2

1

2
Cnρ

−(ν+n) τ ν
n+1

τ ν+1
n

−C−1
n

1

8η0η∞
ρν+n

τ ν+2
n−1

τ ν+1
n

−ν + 1 − n

2

⎞⎟⎟⎟⎠ , (4.8)

respectively, with Cn = (−2η0)
−2n(−2η∞)−n.
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Let us solve the linear equations (2.10) and (2.11) in the coordinate system (p, q, r, t)

given by (3.2). Then we get

ϕj = (−2η0)
−j e−η0z+η∞ z̃w̃ν+1−j ρ−(ν+1−j)ψν+1−j , (4.9)

where ψν is given by (4.3). Equations (2.10) and (2.11) are reduced to the contiguity relations

ψ ′
ν − νψν = −4η0η∞ρψν+1, ψ ′

ν + νψν = ρψν−1, (4.10)

and Bessel’s differential equation ψ ′′
ν + (4η0η∞ρ2 − ν2)ψν = 0, respectively.

Theorem 4.2. Define a sequence of functions ϕj (j ∈ Z) by

ϕj = (−2η0)
−j e−η0z+η∞ z̃w̃ν+1−j ρ−(ν+1−j)ψν+1−j , (4.11)

and the functions τm
n by (2.9). Then the J -matrix corresponding to the classical transcendental

solutions of the Painlevé III equation is given by

J = 1

τ 0
n

(
τ−1
n τ 0

n+1

τ 0
n−1 τ 1

n

)
. (4.12)

We find that the components of the gauge potential are recovered by

Az = −∂zHH−1, Aw = −∂wHH−1,

Az̃ = (−∂z̃H + HJ−1∂z̃J )H−1, Aw̃ = (−∂w̃H + HJ−1∂w̃J )H−1
(4.13)

with

H =
(

w̃− 1
2 (ν+1) e

1
2 (η0z−η∞ z̃)

w̃
1
2 (ν+1) e− 1

2 (η0z−η∞ z̃)

)
. (4.14)

Proof. What we must prove is the following six relations:(
∂z̃τ

m−1
n

)
τm+1
n − (

∂z̃τ
m
n−1

)
τm
n+1 − (

∂z̃τ
m
n

)
τm
n(

τm
n

)2 = 1

4η0ρ2

τ ν+1−m
n+1 τ ν+1−m

n−1(
τ ν+1−m
n

)2 , (4.15)

Dz̃τ
m
n+1 · τm+1

n(
τm
n

)2 = (−2η0)
−m−n(4η0η∞)−n e−η0z+η∞ z̃w̃ν+1−m−n

× η∞ρ−(ν+1−m+n) τ
ν+1−m
n+1 τ ν−m

n(
τ ν+1−m
n

)2 , (4.16)

Dz̃τ
m−1
n · τm

n−1(
τm
n

)2 = (−2η0)
m+n(4η0η∞)n eη0z−η∞ z̃w̃−(ν+1−m−n)

× 1

4η0
ρν−1−m+n

τ ν+2−m
n τ ν+1−m

n−1(
τ ν+1−m
n

)2 , (4.17)

and(
∂w̃τm+1

n

)
τm−1
n − (

∂w̃τm
n+1

)
τm
n−1 − (

∂w̃τm
n

)
τm
n = 0, (4.18)

Dw̃τm
n+1 · τm+1

n(
τm
n

)2 = 1

2
(−2η0)

−(m+n)(4η0η∞)−n e−η0z+η∞ z̃w̃ν−m−nρ−ν+m−n τ ν−m
n+1

τ ν+1−m
n

, (4.19)

Dw̃τm
n−1 · τm−1

n(
τm
n

)2 = −(−2η0)
m+n(4η0η∞)n eη0z−η∞ z̃w̃−ν+m+n−2ρν−m+n 1

8η0η∞

τ ν+2−m
n−1

τ ν+1−m
n

. (4.20)
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From the linear relation ∂z̃ϕj = η∞ϕj and the third relation of (2.13), we have(
∂z̃τ

m−1
n

)
τm+1
n − (

∂z̃τ
m
n−1

)
τm
n+1 − (

∂z̃τ
m
n

)
τm
n = η∞τm

n+1τ
m
n−1. (4.21)

Since it is easy to see that

τm
n = (−2η0)

−mn en(−η0z+η∞ z̃)w̃(ν+1−m)nρ−(ν+1−m)n(4η0η∞ρ2)(
n

2 )τ ν+1−m
n , (4.22)

we get the relation (4.15). In a similar way, we can verify (4.16) and (4.17).
By using ∂w̃ϕj = −η0ϕj+1, we have

∂w̃τm+1
n = −η0|m − n + 2, . . . , m,m + 2|,

∂w̃τm
n+1 = −η0|m − n, . . . , m − 1,m + 1|,

∂w̃τm
n = −η0|m − n + 1, . . . , m − 1,m + 1|,

(4.23)

where we denote

j =

⎛⎜⎜⎝
ϕj

ϕj+1

...

⎞⎟⎟⎠ . (4.24)

Set D := |m − n, . . . , m − 1,m + 1|. Then, the bilinear relation (4.18) is reduced to Jacobi’s
identity

D · D

[
1 n + 1

1 n + 1

]
= D

[
1

1

]
D

[
n + 1

n + 1

]
− D

[
1

n + 1

]
D

[
n + 1

1

]
, (4.25)

where D
[
i1 ··· ik
j1 ··· jk

]
is the minor obtained by deleting the rows with indices i1, . . . , ik and the

columns with indices j1, . . . , jk .
From the first bilinear relation of (2.13), we have

Dw̃τm
n+1 · τm+1

n(
τm
n

)2 = ∂z

(
τm+1
n+1

τm
n

)
, (4.26)

which yields the relation (4.19) due to (4.22). In a similar way, we get (4.20). �

5. Symmetry of the Painlevé III’ equation

It is known that the Painlevé equations admit the affine Weyl group symmetry as the groups of
Bäcklund transformations. In this section, we derive PIII′ directly from Yang’s equation and
show that the (extended) affine Weyl group symmetry of PIII′ is recovered from the symmetry
of Yang’s equation.

5.1. From Yang’s equation to PIII′

Let us specialize the J -matrix as

J =
(

e
1
2 (η0p+η∞q)+θ+rA e

1
2 (−η0p+η∞q)+θ−rB

e
1
2 (η0p−η∞q)−θ−rC e− 1

2 (η0p+η∞q)−θ+rD

)
, (5.1)
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where η0, η∞ and θ± are certain constants1, and A,B,C and D are functions of t satisfying
AD − BC = 1. Then, Yang’s equation (2.3) can be expressed by

[A′D − BC ′ + θ+AD + θ−BC]′ = 0,

[AD′ − B ′C − θ+AD − θ−BC]′ = 0,

[B ′D − BD′ + (θ+ + θ−)BD]′ = −η0η∞tBD,

[AC ′ − A′C − (θ+ + θ−)AC]′ = −η0η∞tAC,

(5.2)

where we denote ′ = t d
dt

. Since one can see that B ′C − BC ′ + (θ+ + θ−)BC and
A′D − AD′ + (θ+ + θ−)AD are constants, we introduce the parameters θ0 and θ∞ by

B ′C − BC ′ + (θ+ + θ−)BC = − 1
2 (θ0 + θ∞),

A′D − AD′ + (θ+ + θ−)AD = − 1
2 (θ0 − θ∞).

(5.3)

Let us introduce the variables X and Y by

X = BC = AD − 1, Y = B ′

B
− D′

D
+ (θ+ + θ−). (5.4)

From (5.3) and the definition of X, we have

A′

A
− D′

D
= − 1

2 (θ0 − θ∞)

1 + X
− (θ+ + θ−),

A′

A
+

D′

D
= X′

1 + X
,

(5.5)

and

B ′

B
− C ′

C
= − 1

2 (θ0 + θ∞)

X
− (θ+ + θ−),

B ′

B
+

C ′

C
= X′

X
.

(5.6)

Then, we obtain from the definition of Y

2Y = X′

X
+

− 1
2 (θ0 + θ∞)

X
− X′

1 + X
+

− 1
2 (θ0 − θ∞)

1 + X
, (5.7)

namely,

X′ = 2YX(1 + X) + θ0X + 1
2 (θ0 + θ∞). (5.8)

On the other hand, we get

B ′

B
+

D′

D
= 1

2

[
X′

X
+

− 1
2 (θ0 + θ∞)

X
+

X′

1 + X
− − 1

2 (θ0 − θ∞)

1 + X

]
= 2YX + Y + θ0, (5.9)

by using (5.8). Then the third equation of (5.2) yields

Y ′ + Y (2YX + Y + θ0) = −η0η∞t. (5.10)

It is easy to see that equations (5.8) and (5.10) are reduced to the Hamiltonian system for
PIII′ (3.7) by the variable transformations Y = η∞y and X = −η−1

∞ x.

1 We see later that it is possible to put θ± = (θ∞ ± θ0)/2.
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5.2. Bäcklund transformations

It is obvious that Yang’s equation (2.3) is invariant under the scaling transformations

z �→ λz, z̃ �→ λ−1z̃ (5.11)

and

z �→ µ−1z, w �→ µ−1w. (5.12)

Each of them induces for PIII′ the transformations

η0 �→ λ−1η0, η∞ �→ λη∞, y �→ λ−1y, x �→ λx, (5.13)

and

t �→ µ−1t, η0 �→ µη0, (5.14)

respectively. We denote their composition by ψ(λ,µ) according to [10].
Next, we consider the following Bäcklund transformation:

γ2 : J �→
(

1

1

)
J

(
1

−1

)
(5.15)

of Yang’s equation. It is easy to see that the action of γ2 is reduced to

γ2: η∞ �→ −η∞, θ+ �→ −θ−, θ− �→ −θ+,

A �→ C, B �→ −D, C �→ A, D �→ −B,
(5.16)

under the specialization of (5.1). Defining the transformation s2 by s2 = ψ(−1,−1)γ2, we
get

s2: θ∞ �→ −θ∞, y �→ −y, x �→ η∞ − x, t �→ −t. (5.17)

We also find that Yang’s equation is invariant under the transformation

χ : z ↔ z̃, w ↔ w̃, J �→ t J. (5.18)

The action of χ is reduced to

χ : η0 �→ η∞, η∞ �→ η0, θ+ �→ −θ+,

A �→ t θ+A, B �→ t−θ−C, C �→ t θ−B, D �→ t−θ+D.
(5.19)

Introducing the transformation s1 by s1 = s2ψ(η∞/η0, 1)χs2, we have

s1: θ0 ↔ θ∞, y �→ y +
1
2 (θ∞ − θ0)

x − η∞
. (5.20)

Finally, we introduce the transformation ξ by ξ = χγβγ , where β and γ are defined in
section 2. This also survives in the reduction procedure to PIII′ , and we get

ξ : η0 �→ −η∞, η∞ �→ −η0, θ0 �→ θ∞ − 1, θ∞ �→ θ0 + 1,

y �→ t

y
, x �→ y

t

[
1

2
(θ0 + θ∞) − yx

]
,

(5.21)

and θ− �→ −θ− + 1.

Proposition 5.1 [10]. The transformations s1, s2, ξ and ψ(λ,µ) generate the group of
Bäcklund transformations of PIII′ .

Thus, we recover the (extended) affine Weyl group symmetry of PIII′ from the symmetry
of Yang’s equation. Note that one can put θ± = (θ∞ ± θ0)/2.
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Appendix A. Yang’s equation and the Ernst equation

Here, we give a brief remark on the reduction process from Yang’s equation to the Ernst
equation [11] that describes the stationary axisymmetric vacuum gravitational fields.

The Ernst equation is given by

f̃

(
∂2
ρ +

1

ρ
∂ρ + ∂2

ζ

)
f̃ − (∂ρf̃ )2 − (∂ζ f̃ )2 + (∂ρψ)2 + (∂ζψ)2 = 0,

f̃

(
∂2
ρ +

1

ρ
∂ρ + ∂2

ζ

)
ψ − 2(∂ρf̃ )(∂ρψ) − 2(∂ζ f̃ )(∂ζψ) = 0.

(A.1)

Introducing the matrix Ĵ by

Ĵ = 1

f̃

(
1 ψ

ψ f̃ 2 + ψ2

)
, (A.2)

we see that the Ernst equation can be written as

∂ρ(ρĴ−1∂ρĴ ) + ∂ζ (ρĴ−1∂ζ Ĵ ) = 0. (A.3)

The Ernst equation (A.3) can be derived from Yang’s equation by a dimensional reduction.
In fact, introducing the new coordinates

ρ = √
ww̃, θ =

√
w

w̃
, ζ = 1

2
(z − z̃), t = 1

2
(z + z̃), (A.4)

and assuming that the J -matrix depends on ρ and ζ , we see that Ĵ (ρ, ζ ) = J (z, z̃, w, w̃) with
t Ĵ = Ĵ satisfies the Ernst equation (A.3).

Proposition A.1 [12, 13]. Define the functions A(n) and Ã(n) by

A(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

u0 iu1 i2u2 . . . in−1un−1

iu1 u0 iu1 . . . in−2un−2

i2u2 iu1 u0 . . . in−3un−3

...
...

...
. . .

...

in−1un−1 in−2un−2 in−3un−3 . . . u0

∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.5)

and Ã(n) = A(n)
[

1
n

]
, respectively, where the entries uj (j = 0, 1, 2, . . .) satisfy(

∂ρ − j

ρ

)
uj−1 = ∂ζ uj ,

(
∂ρ +

j − 1

ρ

)
uj = −∂ζ uj−1 (A.6)

and the linear equation(
∂2
ρ − 1

ρ
∂ρ + ∂2

ζ − j 2 − 1

ρ2

)
uj = 0. (A.7)

Then

Ĵ = 1

A(n)

(
ρ−n+1A(n−1) iÃ(n+1)

iÃ(n+1) ρn−1A(n+1)

)
(A.8)
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or

f̃ = ρn−1 A(n)

A(n−1)
, ψ = iρn−1 Ã(n+1)

A(n−1)
(A.9)

gives rise to a family of solutions to the Ernst equation.

Note that we have the bilinear relations

DρA
(n) · Ã(n) + iDζ Ã

(n+1) · A(n−1) = −n − 2

ρ
A(n)Ã(n),

DρÃ
(n+1) · A(n−1) + iDζA

(n) · Ã(n) = −n − 1

ρ
Ã(n+1)A(n−1)

(A.10)

and

A(n+1)A(n−1) = [A(n)]2 − [Ã(n+1)]2. (A.11)

Let us show that the above family of solutions to the Ernst equation can be obtained from
that to Yang’s equation given in proposition 2.2. We take the entries of determinant ϕj (j ∈ Z)

as

ϕj = θjρ−1uj , uj = uj (ρ, ζ ), (A.12)

where ρ, ζ and θ are defined by (A.4). Then, the linear relation (2.10) and the Laplace
equation (2.11) are reduced to (A.6) and (A.7), respectively. One can set u−j = (−1)juj (j ∈
Z�0), which is consistent with (A.6) and (A.7). In this setting, we see that the functions τm

n

defined in proposition 2.2 yield

τ 0
n = (−1)(

n

2 )ρ−nA(n),

τ 1
n = (−1)(

n

2 )θnρ−ni−nÃ(n+1),

τ−1
n = (−1)

(
n+1

2

)
θ−nρ−ni−nÃ(n+1),

(A.13)

and the bilinear relations (2.13) are reduced to (A.10) and (A.11). A solution to Yang’s
equation

J = 1

τ 0
n

(
τ 0
n−1 τ 1

n

−τ−1
n −τ 0

n+1

)
(A.14)

is reduced to

J = 1

A(n)

(
(−1)n−1ρA(n−1) θni−nÃ(n+1)

−θ−ninÃ(n+1) (−1)n+1ρ−1A(n+1)

)
. (A.15)

Taking appropriate matrices M = M(z,w) and M̃ = M̃(z̃, w̃), we see that Ĵ = M−1JM̃

coincides with (A.8).

Appendix B. From the Ernst equation to PIII

In this section, we mention the reduction from the Ernst equation to PIII.
Let us consider the equation

(ρJ−1∂ρJ )ρ + (ρJ−1∂ζ J )ζ = 0, (B.1)

where J = J (ρ, ζ ) is the matrix-valued function given by

J =
(
A B
C D

)
, AD − BC = 1. (B.2)
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Obviously, equation (B.1) is an asymmetric version of the Ernst equation (A.3). Set

A(ρ, ζ ) = A(ρ), B(ρ, ζ ) = B(ρ)eκζ ,

C(ρ, ζ ) = C(ρ)e−κζ , D(ρ, ζ ) = D(ρ).
(B.3)

Then, equation (B.1) can be written as

(A′D − BC ′)′ = 0,

(B ′D − BD′)′ + κ2ρ2BD = 0,

(A′C − AC ′)′ − κ2ρ2AC = 0,

(AD′ − B ′C)′ = 0,

(B.4)

with AD − BC = 1, where we denote ′ = ρ d
dρ

. By the similar procedure to that in section 5,
one can obtain the Hamiltonian system for PIII.

When we set A = D,

Ĵ =
(

1

1

)
J (B.5)

satisfies the Ernst equation (A.3). It is easy to see that the constraint A = D yields the
condition θ∞ = θ0 in the procedure to derive PIII. This coincides with the result in [14].

Let us consider the specialization uj (ρ, ζ ) = (−κ)jρφj (ρ) eκζ , which is consistent
with (B.3). Then, the linear relations (A.6) and (A.7) are reduced to(

∂ρ − j

ρ

)
φj = −κ2φj+1,

(
∂ρ +

j

ρ

)
φj = φj−1 (B.6)

and (
∂2
ρ +

1

ρ
∂ρ + κ2 − j 2

ρ2

)
φj = 0, (B.7)

respectively. This means that the functions φj can be expressed in terms of the Bessel functions
whose parameter is a non-negative integer. The functions A(n) and Ã(n+1) are reduced to

A(n) = (−1)(
n

2 )κ−2(
n

2 )ρn(2−n) enκζ σ 0
n ,

Ã(n+1) = in(−1)(
n+1

2 )κn(2−n)ρn(2−n) enκζ σ 1
n ,

(B.8)

where σ
j
n is given by

σ j
n =

∣∣∣∣∣∣∣∣∣∣∣

φ
(0)
j φ

(1)
j . . . φ

(n−1)
j

φ
(1)
j φ

(2)
j . . . φ

(n)
j

...
...

. . .
...

φ
(n−1)
j φ

(n)
j . . . φ

(2n−2)
j

∣∣∣∣∣∣∣∣∣∣∣
, φ

(k)
j =

(
ρ

d

dρ

)k

φj . (B.9)

This leads us to the classical transcendental solutions of PIII given in proposition 4.1 with the
additional constraint θ0 = θ∞.
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